
Package: patchSynctex (via r-universe)
September 1, 2024

Type Package

Title Communication Between Editor and Viewer for Literate Programs

Version 0.1-4

Date 2016-12-12

Depends tools, stringr

Enhances knitr, utils

Description This utility eases the debugging of literate documents
('noweb' files) by patching the synchronization information
(the '.synctex(.gz)' file) produced by 'pdflatex' with
concordance information produced by 'Sweave' or 'knitr' and
'Sweave' or 'knitr' ; this allows for bilateral communication
between a text editor (visualizing the 'noweb' source) and a
viewer (visualizing the resultant 'PDF'), thus bypassing the
intermediate 'TeX' file.

License GPL(>=2)

URL https://github.com/EmmanuelCharpentier/patchSynctex

Repository https://emmanuelcharpentier.r-universe.dev

RemoteUrl https://github.com/emmanuelcharpentier/patchsynctex

RemoteRef HEAD

RemoteSha 6d8e7af1dece544922282e2396aa0f2c89cc3422

Contents

patchSynctex-package . 2
patchSynctex . 4

Index 7

1

https://github.com/EmmanuelCharpentier/patchSynctex

2 patchSynctex-package

patchSynctex-package Allows for communication between .Rnw editor and .pdf viewer.

Description

Utility patching the .synctec(.gz) file resulting from then LaTeXing of a .tex file with the concor-
dance information from the .concordance.tex file resulting from knitting (possibly Sweaving) of the
.Rnw source, allowing(for|back)ward searching from the editor to the viewer and back.

Details

Synchronising TeX source and DVI/PDF output considerably eases the editing (and, sometimes,
debugging) of such documents, by allowing interaction between source and end-result. Modern
DVI/PDF viewers and editors support this synchronization, either directly, by using information
embedded in the .dvi or .pdf file, or by using an auxilliary file generated by a LaTeX run with
option \synctex=1, teh .synctex(.gz) file.

However, when one uses a tool such as Sweave or knitr to generate a dynamic document (com-
pounding analysis, computations and report), the resulting .tex file is no longer the original source,
and the references to the .tex file are of little help in the revision of such a document.

Duncan Murdoch’s patchDVI package aims at solving this problem by using a concordance file that
can be generated by passing a concordance=TRUE option so Sweave or knit*. This -concordance.tex
file contains an RLE encoding of the correspondence between the .Rnw source and the .tex inter-
mediary file.

patchDVI uses this concordance information to patch the DVI pointers to source with the relevant
pointers to the .Rnw file.

This package also has a patchSynctex function, attempting t find the relevant information in the
.pdf file. However, some (most ?) PDFs happens to be impenetrable to patchDVI’s patchSynctex
function.

The present package aims at patching the .synctex(.gz) file with pointers to the original .Rnw
source(s), using exclusively the .synctex(.gz) file as a source of information. Therefore, the
tools (editors and viewers) must support Synctex in such a way that, when a .synctex(.gz) file is
present, this information is preffered to the information present in the DVI or PDF document.

This turns out, according to some serious googling and limited testing, to be the case with :

• under Linux: emacs, gedit (editors), evince, okular (viewers), RStudio (IDE);

• under MS-Windows: emacs (editor), Sumatra (viewer), RStudio (IDE).

Furthermore, the .synctex(.gz) file file remains necessary for any synchronization, whereas a
patched .dvi file can in principle be used without the .synctex(.gz) file.

This package is mostly aimed at programs (integrated development environments (IDEs), such as
RStudio, or programmable editors, such as emacs and gedit) able to get R to execute code: it gives
them an easy-to-use interface to a simple function does the ncessary patches for a given document
(characterized by its name sans extension).

Its unique function can still be used from an interactive R session for debugging purposes.

patchSynctex-package 3

Integration in editors and IDEs

This section will be enriched by your contributions.

ESS under emacs: The logical point of insertion of .synctex(.gz) patching is after each PDF
compilation. It may be a bit wasteful (when two or more compilations are necessary, in order, for
example, to fix references), but there is no standard way to determine if a LaTeX run is final.
This can be achieved by placing an advice on the function used to compile to PDF|DVI. The
example shows how to advice PDF compilation.

Up to emacs 24.3: The following elisp snippet can be placed in your emacs initialization file
(e. g. ~/.emacs in Unix(-like) systems):
(defadvice ess-swv-PDF (after ess-run-patchKnitr (&optional

PDFLATEX-CMD)
activate)

"Patches the .synctex.gz file after PDF compilation"
(interactive)
(let* ((fn (buffer-file-name))
(fe (file-name-extension fn)))
(if (string= fe "Rnw")

(progn
(setq RPScmd (concat "patchSynctex('"

(file-name-sans-extension fn)
"')"))

(ess-create-temp-buffer "tampon-ess-execute")
(ess-execute "require(patchSynctex)" 'buffer "tampon-ess-execute")
(ess-execute RPScmd 'buffer "tampon-ess-execute")
(kill-buffer "tampon-ess-execute")))))

(ad-activate 'ess-swv-PDF)

From emacs 24.4 onwards: The previous elisp snippet has to be adapted to the newer advice
system of elisp:

(defun ess-swv-patch-after-PDF (&optional PDFLATEX-CMD)
"Patch the synctex file after PDF compilation"
(let* ((fn (buffer-file-name))
(fe (file-name-extension fn)))
(if (string= fe "Rnw")

(progn
(setq RPScmd (concat "patchSynctex('"

(file-name-sans-extension fn)
"')"))

(ess-create-temp-buffer "tampon-ess-execute")
(ess-execute "require(patchSynctex)" 'buffer "tampon-ess-execute")
(ess-execute RPScmd 'buffer "tampon-ess-execute")
(kill-buffer "tampon-ess-execute")))))

(advice-add 'ess-swv-PDF :after #'ess-swv-patch-after-PDF)

AUCTeX under emacs:

4 patchSynctex

This is a work in progress : AUCTeX is more sophisticated than ESS about PDF production. There
is no single function to advice (and knitting is not yet well integrated, by the way...). In the
meantime, ESS functions remain available. Stay tuned...

Eclipse + StatET: Create an external build configuration (Sweave document processing) and
place :

require(knitr);
opts_knit$set(concordance = TRUE);
texfile <- knit("${resource_loc:${source_file_path}}", encoding="UTF-8")

in the sweave tab, and :

syntex <- if (opts_knit$get('concordance'))"-synctex=1" else "-synctex=0";
command=paste("latexmk -pdf", syntex, "-interaction=nonstopmode", shQuote(texfile));
print(paste("Command ",command,"...\n"));
print(shell(command),intern = TRUE);
if (opts_knit$get('concordance')){

require(patchSynctex);
patchSynctex(texfile);

}
print(paste0(substr(texfile,1, nchar(texfile)-3), "pdf"))

in the LaTeX tab.

Note

The current (1.8) version of knitr does not yet implement concordance for multifile projects (i. e.
children chunks).

Author(s)

Jan Gleixner, Emmanuel Charpentier

Maintainer: Emmanuel Charpentier emm.charpentier@free.fr

References

Duncan Murdoch’s excellent patchDVI has a great vignette explaining the basics of the problem.

patchSynctex Create correspondence between .pdf and .Rnw files

Description

patchSynctex(foo) uses the concordance file foo-concordance.tex generated by knitting (pos-
sibly Sweaveing) foo.Rnw with the option concordance=TRUE to patch foo.synctex(.gz) with
information pointing to foo.Rnw.

emm.charpentier@free.fr
https://CRAN.R-project.org/package=patchDVI

patchSynctex 5

Usage

patchSynctex(nwfile, syncfile=NULL, verbose=FALSE, ...)

Arguments

nwfile name of the file to patch (used sans extension).

syncfile output sync file (if nwfile is related to an included file).

verbose if TRUE, emit a message stating the number of patches. Useful for debugging
integration in your tools.

... Unused. Allows any argument forced by your tools to be passed without causing
an error.

Details

This function reads the information given in the nwfile-concordance.tex file (which must exist)
to patch the nwfile.synctex(.gz) file, which originally contains pointers from nwfile.pdf to
the source in nwfile.tex with information pointing to the latter’s source in nwfile.Rnw.

Editors and viewers supporting Synctex will be able to use this information to allow forward- and
backward search between PDF and ists original source, thus easing debugging.

The nwfile will be used sans extension ; this allows your favorite IDE to pass either the name of
the noweb file or the name of the .tex file.

The syncfile argument allows to force the addition of the patched references to the main syncfile
for a document that uses subfiles. This is a workaround that may or may not be well-supported by
knitr and/or your viewer.

The function may raise errors (files not found), warnings (no patch found to be done) or messages
(number of patched locations).

This function is principally intended for use by programmable IDEs able to execute R code. It is
documented mostly for debugging purposes.

Value

Nothing useful.

Note

The current (1.8) version of knitr does not yet implement concordance for multifile projects (i. e.
children chunks).

Author(s)

Jan Gleixner, Emmanuel Charpentier <emm.charpentier@free.fr>

References

Duncan Murdoch’s excellent patchDVI package: https://cran.r-project.org/package=patchDVI.

https://cran.r-project.org/package=patchDVI

6 patchSynctex

Examples

if(requireNamespace("tools", quietly=TRUE) &&
requireNamespace("knitr", quietly=TRUE)) {
Minimal demonstrative knitr example.
RnwSrc<-"

\\synctex=1
\\documentclass{article}
<<Setup, eval=TRUE, echo=FALSE, results='hide'>>=
opts_knit$set(concordance=TRUE, self.contained=TRUE)##$
require(patchSynctex)
@
\\author{A.~U.~Thor}
\\title{A minimal \\textsf{knitr} example}
\\date{Some time}
\\begin{document}
\\maketitle

A first paragraph of text, which offers a target for forward search\\,:
for example, in \\textsf{emacs} with \\textsf{AUCTeX}, typing
``C-c~C-v'' should bring you to your PDF viewer in the corresponding
typeset line.

<<TestFig, echo=FALSE>>=
curve(sin(x), from=-pi, to=pi, main='A curve generated by R',

sub='back-searching from here should bring you close to the \\'TestFig\\' chunk.')
@

This second paragraph of text is also a convenient target for
back-searching. For example, in \\textsf{evince}, a ``<Ctrl>-click''
should bring you to the \\textsf{noweb} source, bypassing the \\LaTeX
intermediate file.
\\end{document}
"

require(knitr)
cat(RnwSrc, file="Minimal.Rnw")
knit2pdf("Minimal.Rnw", quiet=TRUE)
D1<-file.info("Minimal.synctex.gz")$mtime
patchSynctex("Minimal", verbose=TRUE)
should print a message telling the number of patches
D2<-file.info("Minimal.synctex.gz")$mtime
D1!=D2
should return TRUE
To see the effect, try (example on a Linux system)
Not run: system("evince Minimal.pdf")

}

Index

∗ ~documentation
patchSynctex, 4

∗ ~interface
patchSynctex, 4

patchSynctex, 4
patchSynctex-package, 2

7

	patchSynctex-package
	patchSynctex
	Index

